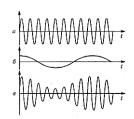
Урок №24 (6.12.2007)


Применение электромагнитных волн. Начало волновой оптики.

Исправить ошибку с прошлого урока: большие антенны, типа Шуховской радиобашни, используются для излучения волн в метровом радиодиапазоне (ДВ: $\lambda = 10^4 \div 10^3$ м, СВ: $\lambda = 10^3 \div 10^2$ м). Телевидение передается в УКВ диапазоне $\lambda = 10 \div 10^{-3}$ м. Телевизионные антенны делаются высокими и ставятся на возвышенностях, чтобы находится в прямой видимости приёмников. Аналогично работают коротковолновые передатчики, КВ: $\lambda = 10^2 \div 10$ м.

1. Принцип радиосвязи (по Бутикову)

Основная проблема — нельзя передавать непосредственно звуковой диапазон. Человек слышит в диапазоне от 20 Гц до 20 кГц ($\lambda = 10^{10} \div 10^7 \ M$). Это очень низкие частоты, а плотность энергии излучаемого сигнала пропорциональна ω^4 .

Поэтому используются высокочастотные колебания, которые изменяют колебаниями звуковой частоты (модуляция). На принимающей стороне эти колебания «расшифровываются» или демодулируются (детектируются). Модуляция бывает амплитудной, частотной и фазовой. Мы рассмотрим лишь простейшую – амплитудную.

Пусть колебания тока *несущей частоты* в антенне имеют вид $I(t) = I_0 \cos \omega t$. Тогда при наложении звукового сигнала (на рис. δ) они принимают вид $I(t) = I_0 \Big[1 + f(t) \Big] \cos \omega t$, где f(t)— модулирующая функция, выражающая передаваемую информацию, для которой |f(t)| < 1 .

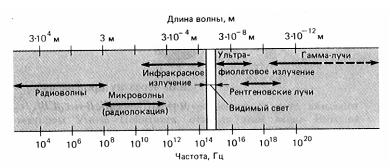

В простейшем случае передачи монохроматического тона $f(t) = m\cos\Omega t$, где m < 1 называется глубиной модуляции. При этом $\Omega \ll \omega$.

Колебания тока в антенне в этом случае будут $I(t) = I_0 [1 + m\cos\Omega t]\cos\omega t$. График такого амплитудно-модулированного сигнала показан на рис. ϵ .

Учитывая, что $\cos \alpha \cdot \cos \beta = \frac{1}{2} \left[\cos (\alpha + \beta) + \cos (\alpha - \beta) \right]$, мы можем выражение для тока в антенне переписать в виде:

$$I(t) = I_0 \cos \omega t + \frac{1}{2} m I_0 \cos \left[(\omega - \Omega) t \right] + \frac{1}{2} m I_0 \cos \left[(\omega + \Omega) t \right].$$

Таким образом, модулированный сигнал имеет частотный спектр ненулевой ширины. Поэтому для того, чтобы передать модулированный сигнал, требуется приёмник, имеющий колебательный контур ограниченной добротности (т.е. приёмник должен выде-


лять из всех радиоволн не строго колебания частоты ω , а диапазон частот от ω – Ω до ω + Ω).

В приёмнике происходит следующая последовательность событий: в приёмной антенне возбуждаются колебания разных частот; далее с помощью колебательного контура с переменным конденсатором, выделяется нужная частота (резонанс); с помощью диода из полученной волны вырезается половина; с помощью низкочас-

тотного фильтра выделяется низкочастотная составляющая, которая усиливается и воспроизводится.

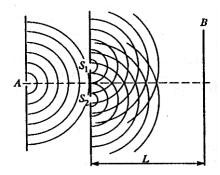
2. Свет как электромагнитная волна

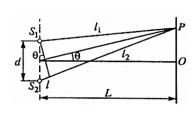
Максвелл получил, что электромагнитные волны движутся со скоростью света... Правда, сами электромагнитные волны были открыты Генрихом Герцем в 1887 г. через восемь лет после смерти Максвелла. Опыты Герца подтвердили, что электромагнитные волны ведут себя точно так же, как свет (отражение, преломление и т.д.).

Интервал от 0,40 до 0,76 мкм – видимый свет; $10^{-5} \div 10^{-7}$ м – область, рассматриваемая классической оптикой.

Отличие между радиоволнами и оптическим диапазоном: способ излучения. Радиоволна излучается передатчиком длительное время, поэтому ее можно с очень высокой точностью считать монохроматической (т.е. со строго определенной длиной волны). Световая волна излучается огромным количеством атомов. Каждый возбужденный атом излучает волновой цуг независимо от других.

Когерентность:


- временная
- пространственная.


3. Интерференция света

Опыт Юнга.

Опыт Юнга (1802). Т.к. источники некогерентны, то интерференцию можно наблюдать лишь при разделении и сведении одного и того же пучка, причем разность хода лучей должна быть меньше длины одного цуга.

Принцип Гюйгенса: каждую точку прохождения волны можно считать вторичным точечным излучателем.

Интерференция в опыте Юнга будет усиливающей, если разность хода волн между двумя лучами будет кратна длине волны света. Считая расстояние между отвер-

стиями $d \ll L$, при малых θ получим для разности хода l : $l = d\theta$. Максимумы будут наблюдаться при углах $\theta_{\max} = n\frac{\lambda}{d}$, $n = 0, \pm 1, \pm 2...$, соответственно минимумы: $\theta_{\min} = \left(n + \frac{1}{2}\right)\frac{\lambda}{d}, \, n = 0, \pm 1, \pm 2...$

Угловое расстояние $\Delta\theta$ между соседними минимумами или максимумами будет λ/d , а расстояние h между ними на экране равно $h = L\Delta\theta = \lambda L/d$.

Оценим максимальный ход лучей, при которых еще возможно наблюдать явление интерференции. Время излучения атома $\sim 10^{-8}\,c$. Следовательно, длина цуга $\delta = 10^{-8} \times 3 \cdot 10^8 \approx 3\, m$.

Трудность наблюдения интерференции света заключается в том, что длина волны света очень мала: при $\lambda = 5 \cdot 10^{-5}$ см и расстоянии между источниками, равном всего d = 0,5 мм, расстояние между максимумами будет составлять только 1 мм при расстоянии до экрана 1 м.